Answer:
Option D
Explanation:
$V=\pi r^{2}h$
Differentiating both sides, we get
$\frac{dV}{dt}=\pi\left(r^{2}\frac{dh}{dt}+2r\frac{dr}{dt}h\right)$
= $\pi r\left(r\frac{dh}{dt}+2h\frac{dr}{dt}\right)$
$\frac{dr}{dt}=\frac{1}{10}and\frac{dh}{dt}=-\frac{2}{10}$
$\frac{dV}{dt}=\pi r\left(r\left(\frac{-2}{10}+2h\frac{1}{10}\right)\right)$
= $\frac{\pi\ r}{5}\left(-r+h\right)$
Thus, when r = 2 and h = 3,
$\frac{dV}{dt}=\frac{\pi (2)}{5}(-2+3)=\frac{2\pi}{5}$