Answer:
Option A
Explanation:
$x \frac{dy}{dx}+y=x.\frac{f(xy)}{f'(xy)}$,
i.e, $\frac{d}{dx}(xy)=x \frac{f(x,y)}{f'(x,y)}$
$\Rightarrow$ $\frac{f'(xy)}{f(xy)} d(xy)=x dx$
$\Rightarrow$ $\int \frac{f'(xy)}{f(xy)} d(xy)=\int xdx$
$\Rightarrow$ $\log [f(xy)]= \frac{x^{2}}{2}+C$
$\Rightarrow$ $f(xy)= e^{(x^{2}/2+C)}$
$\Rightarrow$ $e^{x^{2}/2} .e^{C}$= $k.e^{\frac{x^{2}}{2}}$