Answer:
Option B
Explanation:
In hydrogen emission spectrum , wavelength is given by
$\frac{1}{\lambda}=R\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$
For maximum wavelength of any principal quantum number n,
n1 =n and n2= n+1
$\therefore$ $\frac{1}{\lambda_{max}}=R\left(\frac{1}{n^2}-\frac{1}{(n+1)^2}\right)$
$=R\left[\frac{(n+1)^{2}-n^{2}}{n^{2}(n+1)^{2}}\right]$
$=R\frac{(n^{2}+2n+1-n^{2})}{n^{2}(n+1)^{2}}$
$\frac{1}{\lambda_{max}}=\frac{R^{2}(2n+1)}{n^{2}(n+1)^{2}}$
$\lambda_{max}=\frac{n^{2}(n+1)^{2}}{R^{}(2n+1)}$