Answer:
Option B
Explanation:
Key Idea First find the weight of copper deposited, by using the formula number of moles= Weight/ molecular weight
and then calculate the weight of Al deposited and the number of moles of Al by using the second law of Faraday's.
Given,
Number of moles of Cu deposited =0.4 moles
According to Faraday's second law,
weight of Cu deposited / weight of Al deposited= Eq. wt. of Cu/ Eq. wt. of Al
$\because$ No. of moles = $\frac {weight}{molecular weight}$
$\therefore$ Weight of Cu = 0.4 x 63.5
Now, from Eq.(i),
= 0.4 x 6.5 / weight of Al deposited = $\frac{\frac{63.5}{2}}{\frac{27}{3}}$
$\therefore$ Weight of Al deposited= $\frac{0.4 \times 63.5\times9}{31.75}=7.2 g$
Now, number of moles of Al deposited = $\frac{7.2}{27}=0.27 $ moles