Answer:
Option D
Explanation:
For the calaculation of $C\equiv C$ bond energy we must first calculate dissociation energy of $C_{2}H_{2}$ as
$C_{2}H_{2}$(g)$ \rightarrow$ $2C(g)+2H(g)$.....(i)
Using the given bond energoes and enthalpies
$C_{2}H_{2}(g) \rightarrow 2C(g)+2H(g);$
$\triangle H=-225kJ$ ........(ii)
$2C (s) \rightarrow 2C(g);$ $ \triangle H=1410kJ$..........(iii)
$H_{2}(g) \rightarrow 2H(g);$ $\triangle H=330kJ$......(iv)
adding equation (ii),(iii) and (iv) gives equation(i)
$\Rightarrow$ $C_{2}H_{2}(g) \rightarrow 2C(g)+2H(g)$;
$\triangle H=1515 kJ$
$\Rightarrow$ 1515kJ=$2 \times$ (C-H)BE+($C\equiv C$)BE
=$2 \times 350$+($C\equiv C$)BE
$\Rightarrow$ $(C\equiv C)$BE=1515-700=815 kJ/mol