Answer:
Option E
Explanation:
Given: $Y$'s $1$ days work $=\frac{1}{12}$.
I. gives, $(X+Y)$'s $1$ day's work $=\frac{1}{3}$.
$\Rightarrow$ $X$'s $1$ day's work $=\left(\frac{1}{3}-\frac{1}{12}\right)$ $=\frac{3}{12}$ $=\frac{1}{4}$.
II. gives, $(Y+Z)$'s $1$ day's work $=\frac{1}{6}$
$\Rightarrow$ $Z$'s $1$ day's work $=\left(\frac{1}{6}-\frac{1}{12}\right)$ $=\frac{1}{12}$.
$\therefore$ $(X+Y+Z)$'s $1$ day work $=\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{12}\right)$ $=\frac{5}{12}$.
Hence, they will all finish the work in $\frac{12}{5}$ $=2\frac{2}{5}$ days.
Thus, I and II both are necessary to get the answer.
$\therefore$ Correct answer is (E).