Answer:
Option C
Explanation:
$(A+B)$’s $1$ hour filling work $=\frac{1}{6}$
I. Suppose $A$ takes $x$ hours to fill the tank.
Then, $B$ takes $(x+5)$ hours to fill the tank.
$\therefore$ ($A$’s $1$ hour work) + ($B$’s $1$ hour work) = $(A+B)$’s $1$ hour work
$\Leftrightarrow\frac{1}{x}+\frac{1}{(x+5)}$ $=\frac{1}{6}$
$\Leftrightarrow\frac{(x+5)+x}{x(x+5)}$ $=\frac{1}{6}$
$\Leftrightarrow x^{2}-5x$ $=12x+30$
$\Leftrightarrow x^{2}-7x-30=0$
$\Leftrightarrow x^{2}-10x+3x-30$ $=0$
$\Leftrightarrow x(x-10)+3(x-10)$ $=0$
$\Leftrightarrow (x-10)(x+3)$ $=0$
$\Leftrightarrow x=10$.
So, $A$ alone takes 10 hours to fill the tank.
II. Suppose $A$ takes $2x$ hours and $B$ takes $3x$ hours to fill the tank. Then,
$\frac{1}{2x}+\frac{1}{3x}=\frac{1}{6}$
$\Leftrightarrow\left(\frac{1}{2}+\frac{1}{3}\right).\frac{1}{x}$ $=\frac{1}{6}$
$\Leftrightarrow\frac{5}{6x}$ $=\frac{1}{6}$
$\Leftrightarrow x=5$.
So, $A$ alone takes $(2\times 5)=10$ hours to fill the tank.
Thus, each one of I and II gives the answer.
$\therefore$ the correct answer is (C).