Answer:
Option D
Explanation:
Using prism formula
$\mu=\frac{\sin\left(\frac{A+\delta_{m}}{2}\right)}{\sin(\frac{A}{2})}$ .....(i)
where , A= angle of prism
$\delta_{m}$= angle of minimum deviation
Given, $\mu=\cot(\frac{A}{2})=\frac{\cos\left(\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right)}$
So, from eq.(i)
$\frac{\cos\left(\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right)}=\frac{\sin\left(\frac{A+\delta_{m}}{2}\right)}{\sin\left(\frac{A}{2}\right)}$
$\Rightarrow \sin (\frac{\pi}{2}-\frac{A}{2})=\sin\left(\frac{A}{2}+\frac{\delta_{m}}{2}\right)$
$\Rightarrow \delta_{m}=\pi-2A=180^{0}-2A$