Answer:
Option B
Explanation:
Let the initial investments of $A$, $B$ and $C$ be Rs. $3x$, Rs. $2x$ and Rs. $4x$ respectively.
Then, $(3x\times 36)$ $:\left[(2x\times 12)+(2x+270000)\times 24\right]$ $:\left[(4x\times 24)+(4x+270000)\times 12\right]$
$=3:4:5$.
$\Rightarrow 108x$ $:(72x+6480000)$ $: (144x+3240000)$ $= 3:4:5$
$=\frac{108}{72x+6480000}$ $=\frac{3}{4}$ $=432x$ $=216x+19440000$
$\Rightarrow 216x$ $=19440000$ $\Rightarrow x=90000$.
Hence, A's initial investment $=3x$ = Rs. 2,70,000.
B's initial investment $=2x$ = Rs. 1,80,000.
C's initial investment $=4x$ = Rs. 3,60,000.