3 The value of $\left(\frac{1}{3}log_{10}125-2log_{10}4+log_{10}32\right)$ is : A) 1 B) 4 C) $\frac{4}{5}$ D) 2
4 If log 2 $=x$, log 3 $=y$ and log 7 $=z$, then the value of log $(4.\sqrt[3]{69})$ is : A) $2x+\frac{2}{3}y$ $-\frac{1}{3}z$ B) $2x+\frac{2}{3}y$ $+\frac{1}{3}z$ C) $2x-\frac{2}{3}y$ $+\frac{1}{3}z$ D) $-2x+\frac{2}{3}y$ $+\frac{1}{3}z$
5 If $log_{12}27$ $=a$, then $log_{6}16$ is : A) $\frac{3-a}{4(3+a)}$ B) $\frac{3+a}{4(3-a)}$ C) $\frac{3+a}{(3-a)}$ D) $\frac{4(3-a)}{(3+a)}$
7 If $log(0.57)$ $=\overline{1}$$.756$, then the value of log 57 + log $(0.57)^{3}$ + log $\sqrt{0.57}$ is : A) $\overline{2}$$.146$ B) 0.902 C) $\overline{1}$$.146$ D) 1.902
9 $log\left(\frac{a^{2}}{bc}\right)$ $+log\left(\frac{b^{2}}{ac}\right)$ $+log\left(\frac{c^{2}}{ab}\right)$ is equal to A) 0 B) 2 C) 4 D) 1
11 $\frac{1}{\log_{xy}{xyz}}+\frac{1}{\log_{yz}{xyz}}+\frac{1}{\log_{zx}{xyz}}$ is A) 1 B) 2 C) log 2 D) $\frac{1}{2}$
13 If log m + log n = log(m+n) then m is given by A) $\frac{n+1}{2}$ B) $\frac{n+1}{n}$ C) $\frac{n}{n-1}$ D) None of these