1) If f(x) = $x^{3}+bx^{2}+cx+d$ and 0<b2<c, then in (-∞, ∞) A) f(x) is a strictly increasing function B) f(x) has local maxima C) f(x) is a strictly decreasing function D) f(x) is bounded Answer: Option AExplanation:f(x) = $x^{3}+bx^{2}+cx+d$ and 0<b2<c .'. f'(x) = $3x^{2}+2bx+c$ Discriminant = 4b2 -12c = 4(b2 - 3c)<0 f'(x) >0 $\forall$ xΕ R Thus,f(x) is strictly increasing $\forall$ x Ε R