Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If f(x) = x3+bx2+cx+d and 0<b2<c, then in (-∞, ∞)


A) f(x) is a strictly increasing function

B) f(x) has local maxima

C) f(x) is a strictly decreasing function

D) f(x) is bounded

Answer:

Option A

Explanation:

f(x) = x3+bx2+cx+d and 0<b2<c

.'. f'(x) = 3x2+2bx+c 

Discriminant  = 4b2 -12c = 4(b2 - 3c)<0

f'(x) >0 xΕ R

Thus,f(x) is strictly increasing x Ε R