Answer:
Option B
Explanation:
I = $ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{1}{1+\sqrt{\cot x}}dx$
$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx$ ...(i)
Then I=
$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\sqrt{\sin (\frac{\pi}{2}-x)}}{\sqrt{\sin(\frac{\pi}{2}-x)}+\sqrt{\cos(\frac{\pi}{2}-x)}}dx $
I = $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\sqrt{\cos x)}}{\sqrt{\cos x)}+\sqrt{\sin x)}}dx$ ...(ii)
Adding (i) and (ii) we get
2I = $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\sqrt{\sin x}+\sqrt{\cos x)}}{\sqrt{\cos x)}+\sqrt{\sin x)}}dx$
$2I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}1.dx =[x]_\frac{\pi}{6}^\frac{\pi}{3}$
= $\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}$
I = $\frac{\pi}{12}$