Answer:
Option B
Explanation:
I = ∫π3π611+√cotxdx
∫π3π6√sinx√sinx+√cosxdx ...(i)
Then I=
∫π3π6√sin(π2−x)√sin(π2−x)+√cos(π2−x)dx
I = ∫π3π6√cosx)√cosx)+√sinx)dx ...(ii)
Adding (i) and (ii) we get
2I = ∫π3π6√sinx+√cosx)√cosx)+√sinx)dx
2I=∫π3π61.dx=[x]π3π6
= π3−π6=π6
I = π12