1) The area under the curve y = |cos x - sin x|, 0≤x≤$\frac{\pi}{2}$ A) $2\sqrt{2}$ B) $2\sqrt{2}-2$ C) $2\sqrt{2}+2$ D) 0 Answer: Option BExplanation: y = |cos x - sin x| Required area = $2\int_{0}^{\frac{\pi}{4}} (\cos x -\sin x)dx$ $2 \left[\sin x+\cos x\right]_0^\frac{\pi}{4}$ = $2 \left[\frac{2}{\sqrt{2}}-1\right]$ $2\sqrt{2}-2$