Answer:
Option A
Explanation:
We have,
OA = |$2\hat{i}+2\hat{j}+\hat{k}$| = 3;
OB = |$2\hat{i}+4\hat{j}+4\hat{k}$| = 6
Since the internal bisector divides opposite side in the
ratio of adjacent sides
$\frac{AC}{BC} = \frac{3}{6}=\frac{1}{2}$
where OD is the bisector of <BOA .
.'. The position vector of C is
$\frac{2(2\hat{i}+2\hat{j}+\hat{k})+(2\hat{i}+4\hat{j}+4\hat{k})}{2+1} $
=$2\hat{i}+\frac{8}{3}\hat{j}+2\hat{k}$
.'. OD = |$2\hat{i}+\frac{8}{3}\hat{j}+2\hat{k}$|
= $\sqrt{\frac{136}{9}}$