1)

A large number of liquid drops each of radius r coalesce to form a single drop of radius R. The energy released in the process is converted into kinetic energy of the big drop so formed. The speed of the big drop is (given, the surface tension of liquid T, density ρ )


A) $\sqrt{\frac{T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right]}$

B) $\sqrt{\frac{2T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right]}$

C) $\sqrt{\frac{4T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right]}$

D) $\sqrt{\frac{6T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right]}$

Answer:

Option D

Explanation:

When drops combine to form a single drop of radius R

Then energy released,

$E = 4\pi TR^{3}\left[\frac{1}{r}-\frac{1}{R}\right]$

If this energy is converted into kinetic energy then

$\frac{1}{2}mv^{2} = 4\pi TR^{3}\left[\frac{1}{r}-\frac{1}{R}\right]$

$\frac{1}{2}\left[\frac{4}{3}\pi R^{3}\rho\right] v^{2} = 4\pi TR^{3}\left[\frac{1}{r}-\frac{1}{R}\right]$

$v = \sqrt{\frac{6T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right]}$