Answer:
Option D
Explanation:
When drops combine to form a single drop of radius R
Then energy released,
$E = 4\pi TR^{3}\left[\frac{1}{r}-\frac{1}{R}\right]$
If this energy is converted into kinetic energy then
$\frac{1}{2}mv^{2} = 4\pi TR^{3}\left[\frac{1}{r}-\frac{1}{R}\right]$
$\frac{1}{2}\left[\frac{4}{3}\pi R^{3}\rho\right] v^{2} = 4\pi TR^{3}\left[\frac{1}{r}-\frac{1}{R}\right]$
$v = \sqrt{\frac{6T}{\rho}\left[\frac{1}{r}-\frac{1}{R}\right]}$