Answer:
Option A
Explanation:
Given, $P(\overline{A\cup B}) =\frac{1}{6}$
$\Rightarrow P({A\cup B}) =1-\frac{1}{6}=\frac{5}{6}$
$P(\overline{A}) =\frac{1}{4}$ $\Rightarrow P(A) =1-\frac{1}{4}=\frac{3}{4}$
We know,
$P(A\cup B) = P(A) + P(B) - P(A \cap B)$
$\Rightarrow \frac{5}{6}=\frac{3}{4}+P(B)-\frac{1}{4}$
$\Rightarrow P(B)=\frac{1}{3}$
P(A)≠P(B) so they are not equally likely
Also P(A) x P(B)=3/4 × 1/3= 1/4 = $P(A \cap B)$
So A & B are independent