Answer:
Option C
Explanation:
$x^{3}-3xy^{2} + 2 = 0$
differentiating w.r.t. x :
$3x^{2} -3x(2y)\frac{dy}{dx}-3y^{2} = 0$
$\Rightarrow\frac{dy}{dx}=\frac{3x^{2}-3y^{2}}{6xy}$ and $3x^{2}y-y^{3}-2 = 0$
differentiating w.r.t. x:
$3x^{2}\frac{dy}{dx}+6xy-3y^{2}\frac{dy}{dx}= 0$
$\Rightarrow\frac{dy}{dx} = -\left(\frac{6xy}{3x^{2}-3y^{2}}\right)$
Now, Product of slope
$\frac{3x^{2}-3y^{2}}{6xy}$× $-\left(\frac{6xy}{3x^{2}-3y^{2}}\right)$
.'. they are perpendicular. Hence, angle = π/2