Answer:
Option C
Explanation:
Equation of ellipse is 9x2 + 16y2 = 144 or $\frac{x^{2}}{16}+\frac{y^{2}}{9} = 1$
Comparing this with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1$
then we get a2 = 16 and b2 = 9 and comparing the line y = x+λ, with y = mx+c
.'. m = 1 and c = λ
If the line y = x + 1, touches the eilipse 9x2 + 16y2 = 144, then c2 = a2m2+b2
→ λ2 = 16×12 +9 → λ2 = 25 .'. λ =± 5