Answer:
Option B
Explanation:
$\begin{vmatrix}1 & a & -1 \\2 & -1 & a\\ a & 1& 2\end{vmatrix} = 0$
Applying R2→ R2 - 2R1 and R3 → R3 - aR1, we get
$\begin{vmatrix}1 & a & -1 \\0 & -1-2a & a+2\\ 0 & 1-a^{2}& 2+a\end{vmatrix} = 0$
Expanding along C1, we get
$(a + 2) (a^{2} - 2a - 2) = 0\Rightarrow a= - 2, 1\pm \sqrt{3}$