1)

The value of c in Rolle's Theorem for the function

f(x) = ex sin x, x Ε [0, π] is


A) $\frac{\pi}{6}$

B) $\frac{\pi}{4}$

C) $\frac{\pi}{2}$

D) $\frac{3\pi}{4}$

Answer:

Option D

Explanation:

Since Rolle's theorem is satisfied

.'. f'(c) = 0  →  ec sin c + cos ec = 0

→ ec { sin c +cos c} = 0

.'. sin c + cos c = 0   ($\because e^{c}\neq0$)

→ tan c = -1 → c = tan-1(-1) = $\pi-\frac{\pi}{4}$ = $\frac{3\pi}{4}$