1) The vector equation of the symmetrical form of equation of straight line x−53=y+47=z−62 is A) →r=(3ˆi+7ˆj+2ˆk)+μ(5ˆi+4j−6ˆk) B) →r=(5ˆi+4ˆj−6ˆk)+μ(3ˆi+7j+2ˆk) C) →r=(5ˆi−4ˆj−6ˆk)+μ(3ˆi−7j−2ˆk) D) →r=(5ˆi−4ˆj+6ˆk)+μ(3ˆi+7j+2ˆk) Answer: Option DExplanation:x−x1a=y−y1b=z−z1c have vector form = (x1ˆi+y1ˆj+z1ˆk)+λ(aˆi+bˆj+cˆk) Required equation in vector form is →r=(5ˆi−4ˆj+6ˆk)+μ(3ˆi+7j+2ˆk)