1) If $\int_{}^{}\frac{3x + 1}{(x-5)(x-3)} $dx = $\int_{}^{}\frac{-5}{(x-3)}dx + \int_{}^{} \frac{B}{x-5}dx$, then the value of B is A) 3 B) 4 C) 6 D) 8 Answer: Option DExplanation:We have, $\frac{ 3x +1}{(x-3)(x-5)}$ = $\frac{ -5}{(x-3)}+\frac{B}{(x-5)}$ 3x+1 = -5(x-5) + B(x-3) Put x = 5 3(5)+1 + B(5-3) 16 = 2B or B = 8