1)

sin-1(sin 5) > x2 - 4x holds if


A) $x = 2-\sqrt{9-2\pi}$

B) $x = 2+\sqrt{9-2\pi}$

C) $x > 2+\sqrt{9-2\pi}$

D) $x \epsilon ( 2-\sqrt{9-2\pi},2+\sqrt{9-2\pi})$

Answer:

Option D

Explanation:

$\frac{3\pi}{2}<5<\frac{5\pi}{2}$

$\Rightarrow \sin^{-1}(\sin5)=5-2\pi$

$Given \sin^{-1}(\sin5)>x^{2}-4x$

$\Rightarrow x^{2}-4x+4<9-2\pi$

$\Rightarrow (x-2)^{2}<9-2\pi$

$\Rightarrow -\sqrt{9-2\pi}<x-2<\sqrt{9-2\pi}$

$\Rightarrow 2-\sqrt{9-2\pi}<x<2+\sqrt{9-2\pi}$