Answer:
Option D
Explanation:
Radius of circle
$=\sqrt{4+9-9\sin^{2}\alpha-13\cos^{b}\alpha}=2 \begin{vmatrix}\sin \alpha\end{vmatrix}$
If T be (h,k) then
$\tan\alpha=\frac{2 \begin{vmatrix}\sin \alpha\end{vmatrix}}{\sqrt{h^{2}+k^{2}+4h-6k+9\sin^{2}\alpha+ 13\cos^{2}\alpha}}$
$\Rightarrow{h^{2}+k^{2}+4h-6k+9\sin^{2}\alpha+ 13\cos^{2}\alpha}=4\cos^{2}\alpha$
$\Rightarrow{h^{2}+k^{2}+4h-6k+9=0}$
∴ Locus of T is ${x^{2}+y^{2}+4x-6y+9=0}$