Answer:
Option C
Explanation:
If $A=\begin{bmatrix}3 & -2 & 4 \\1 & 2 & -1\\0 & 1 & 1 \end{bmatrix}$
and $A^{-1}=\frac{1}{k}adj\left(A\right)$ ...(i)
Also, we know $A^{-1}=\frac{adj\left(A\right)}{\begin{vmatrix}A\\\end{vmatrix}}$ ........(ii)
∴ By comparing (i) and (ii)
${\begin{vmatrix}A\\\end{vmatrix}=k}$
$\Rightarrow{\begin{vmatrix}A\\\end{vmatrix}=\begin{bmatrix}3 & -2 & 4 \\1 & 2 & -1\\0 & 1 & 1 \end{bmatrix}}$
=3(2+1)+2(1+0)+4(1-0)
=9+2+4=15