Answer:
Option C
Explanation:
We have, $f(x)=\lim_{n \rightarrow \alpha}\frac{(2\sin x)^{2n}}{3^{n}-(2\cos x)^{2n}}$
$=\lim_{n \rightarrow \alpha}\frac{(2\sin x)^{2n}}{(\sqrt{3})^{2n}-(2\cos x)^{2n}}$
f(x) is discountinuous when
${(\sqrt{3})^{2n}-(2\cos x)^{2n}=0}$
i.e. $\cos x = \pm\frac{\sqrt{3}}{2}\Rightarrow x =n\pi\pm\frac{\pi}{6}$