Answer:
Option A
Explanation:
Eccentrcity of $\frac{x^{2}}{25}+\frac{y^{2}}{25\sin^{2}\alpha}=1$ is
$\sqrt{1+\sin^{2}\alpha}$
Eccentrcity of $\frac{x^{2}}{5\sin^{2}\alpha}+\frac{y^{2}}{5}=1$ is
$\sqrt{1-\sin^{2}\alpha}$
Given, $\sqrt{1+\sin^{2}\alpha}=\sqrt{5}\sqrt{1-\sin^{2}\alpha} $
⇒ $\sin^{2}\alpha=\frac{2}{3}$
⇒ $\alpha=\sin^{-1}\sqrt{\frac{2}{3}}=\tan^{-1}\sqrt{2}$