1)

If the eccentricity of the hyperbola

x2-y2 cosec2α= 25 is $\sqrt{5}$    times the 

eccentricity of the elipse x2 cosec2α+y2=5 then α is equal to;


A) $\tan^{-1}\sqrt{2}$

B) $\sin^{-1}\sqrt{\frac{3}{4}}$

C) $\tan^{-1}\sqrt{\frac{2}{5}}$

D) $\sin^{-1}\sqrt{\frac{2}{5}}$

Answer:

Option A

Explanation:

Eccentrcity of $\frac{x^{2}}{25}+\frac{y^{2}}{25\sin^{2}\alpha}=1$   is

$\sqrt{1+\sin^{2}\alpha}$

Eccentrcity of $\frac{x^{2}}{5\sin^{2}\alpha}+\frac{y^{2}}{5}=1$     is

$\sqrt{1-\sin^{2}\alpha}$

Given, $\sqrt{1+\sin^{2}\alpha}=\sqrt{5}\sqrt{1-\sin^{2}\alpha} $

⇒ $\sin^{2}\alpha=\frac{2}{3}$

⇒ $\alpha=\sin^{-1}\sqrt{\frac{2}{3}}=\tan^{-1}\sqrt{2}$