Answer:
Option A
Explanation:
The line $\frac{x}{p}+\frac{y}{q}$ = 1 be a normal to the parabola y2 = 4ax if, for some value of m, it is identical with
y = mx-2am - am3 i.e. mx-y = (2am+ am3)
Comparing coefficients, we get
$\frac{m}{1/p}=\frac{-1}{1/q}=\frac{2am +am^{3}}{1}$ → mp = -q
.'. m= -q/p and mp = m(2a+am2)
or p = $2a+\frac{aq^{2}}{p^{2}}$ or $p^{3} = 2ap^{2}+aq^{2}$