1) If un∫π/40tannθdθ , then un + un-2 is A) 1n−1 B) 1n+1 C) 12n−1 D) 12n+1 Answer: Option AExplanation:Given : un∫π/40tannθdθ = ∫π/40tan2θtann−2θdθ = ∫π/40(sec2θ−1)tann−2θdθ = ∫π/40sec2θtann−2θdθ - ∫π/40tann−2θdθ = ∫π/40(sec2θ)tann−2θdθ - un-2 un + un-2 = ∫π/40sec2θtann−2θdθ = tann−1θn−1∣π40 = 1n−1