Answer:
Option B
Explanation:
$I= I_{0}(1-e^{-t / \tau}$)
Where $\tau$ → time constant
$\therefore$ $\frac{3}{4}I_{0}=I_{0}(1-e^{-t/\tau})$
$\Rightarrow\frac{3}{4}=1-e^{-t/\tau}\Rightarrow e^{-t/\tau}=\frac{1}{4}$
$\Rightarrow\frac{t}{\tau}In e=In \frac{1}{4}\Rightarrow\frac{-4}{\tau}=-2 In 2$
$\Rightarrow $ $\tau= \frac{2}{In 2}$