1)

The current in an L-R  circuit builds up to (3/4)th of its steady-state value in 4 seconds . The time constant of this circuit is 


A) $\frac{1}{In 2}sec$

B) $\frac{2}{In 2}sec$

C) $\frac{3}{In 2}sec$

D) $\frac{4}{In 2}sec$

Answer:

Option B

Explanation:

$I= I_{0}(1-e^{-t / \tau}$)

  Where $\tau$ → time constant 

 $\therefore$     $\frac{3}{4}I_{0}=I_{0}(1-e^{-t/\tau})$

 $\Rightarrow\frac{3}{4}=1-e^{-t/\tau}\Rightarrow e^{-t/\tau}=\frac{1}{4}$

 $\Rightarrow\frac{t}{\tau}In e=In \frac{1}{4}\Rightarrow\frac{-4}{\tau}=-2 In 2$

 $\Rightarrow $     $\tau= \frac{2}{In 2}$