1)

 A long straight wire of radius R carries a current I. The magnetic field inside the wire at distance r from its centre is expressed as


A) $(\frac{\mu_{0}i}{\pi R^{2}}).r$

B) $(\frac{2 \mu_{0}i}{\pi R^{2}}).r$

C) $(\frac{\mu_{0}i}{2 \pi R^{2}}).r$

D) $(\frac{\mu_{0}i}{2 \pi R^{}}).r$

Answer:

Option C

Explanation:

Using Ampere's law, we have

 $\oint \overrightarrow{B}.\overrightarrow{dl}=\mu_{0}i_{in}$   

or   $B \times 2\pi r =\mu_{0}\frac{i}{\pi R^{2}}\pi r^{2}$

1752021633_p4.JPG

  $\therefore$      $B= \frac{\mu_{0}}{2\pi}.\frac{ir}{R^{2}}$