Answer:
Option D
Explanation:
$\int \frac{dx}{x^{2}(x^{4}-1)^{3/4}}=\int \frac{dx}{x^{5}\left(1+\frac{1}{x^{4}}\right)^{3/4}}$
Put $1+\frac{1}{x^{4}}=t\Rightarrow-\frac{4}{x^{5}}dx=dt$
So, integral is
$I= -\frac{1}{4}\int\frac{dt}{t^{3/4}}=-t^{\frac{1}{4}}+c=-\left(1+\frac{1}{x^{4}}\right)^{1/4}+c$