Answer:
Option A
Explanation:
Let A = (a,0,0) , B= (0,b,0) C= (0,0,c) then equation of the plane is
$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
Its distance from the origin,
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$ ......(i)
If (x,y,z) the centroid of $\triangle$ ABC, then
$x=\frac{a}{3},y=\frac{b}{3},z=\frac{c}{3}$ .....(ii)
eliminating a,b,c from (i) and (ii) required locus is
$x^{-2}+y^{-2}+z^{-2}=9p^{-2}$