1)

The normal at the point ( $at_{1}^{2}, 2at_{1}$) on the parabola, cuts the parabola again at the point whose parameter is 


A) $t_{2}=t_{1}-\frac{2}{t_{1}}$

B) $t_{2}=t_{1}+\frac{2}{t_{1}}$

C) $t_{2}=-(t_{1}+\frac{2}{t_{1}})$

D) none of these

Answer:

Option C

Explanation:

 Let the normal at 't1'  cuts the parabola again at the point 't2' , the equation of the normal at  ( $at_{1}^{2}, 2at_{1}$)  is y+t1 x =2at1 +at13

Since it passes through the point 't2' i.e,

 ( $at_{2}^{2}, 2at_{1}$) 

 $\therefore$      $2at_{2}+at_{1}t_2^2=2at_{1}+at_1^3$

 $\Rightarrow2a(t_{1}-t_{2})+at_1(t_1^2-t_2^2)=0$

$\Rightarrow  2+t_{1}(t_{1}+t_{2})=0(\because t_{1}-t_{2}\neq0)$

$\Rightarrow  2+t_{1}^{2}+t_{1}t_{2}=0$

 $\Rightarrow  t_{1}t_{2}=-(t_{1}^{2}+2)\Rightarrow t_{2}=-\left(t_{1}+\frac{2}{t_{1}}\right)$