Answer:
Option C
Explanation:
Let the normal at 't1' cuts the parabola again at the point 't2' , the equation of the normal at ( $at_{1}^{2}, 2at_{1}$) is y+t1 x =2at1 +at13
Since it passes through the point 't2' i.e,
( $at_{2}^{2}, 2at_{1}$)
$\therefore$ $2at_{2}+at_{1}t_2^2=2at_{1}+at_1^3$
$\Rightarrow2a(t_{1}-t_{2})+at_1(t_1^2-t_2^2)=0$
$\Rightarrow 2+t_{1}(t_{1}+t_{2})=0(\because t_{1}-t_{2}\neq0)$
$\Rightarrow 2+t_{1}^{2}+t_{1}t_{2}=0$
$\Rightarrow t_{1}t_{2}=-(t_{1}^{2}+2)\Rightarrow t_{2}=-\left(t_{1}+\frac{2}{t_{1}}\right)$