Answer:
Option D
Explanation:
If curve r = a sin3$\theta$
To trace the curve , we consider the following table:
Thus there is a loop between $\theta$ =0 & $\theta=\frac{\pi}{3}$
as r varies from r=0 to r=0.
Hence, the area of the loop lying in the
positive quadrant $=\frac{1}{2}\int_{0}^{\frac{\pi}{3}} r^{2}d\theta$
$=\frac{1}{2}\int_{0}^{\frac{\pi}{3}}\sin^{2}\phi .\frac{1}{3}d\phi$
[on putting , $=3\theta=\phi\Rightarrow d\theta=\frac{1}{3}d\phi]$
$=\frac{a^{2}}{6}\int_{0}^{\frac{\pi}{2}} \sin^{2}\phi d\phi$
$=\frac{a^{2}}{6}\int_{0}^{\frac{\pi}{2}} \frac{1-\cos2\phi}{2}d\phi [\because \cos2\theta=1-2\sin^{2}\theta]$
$=\frac{a^{2}}{12}\left[\phi+\frac{\sin 2 \phi}{2}\right]^{\frac{\pi}{2}}_{0}$
$=\frac{a^{2}}{12}\left[\frac{\pi}{2}+\sin\pi\right]=\frac{a^{2}\pi}{24}$