Answer:
Option B
Explanation:
Given $e^{x}=y+\sqrt{1+y^{2}}$
$\Rightarrow e^{x}-y=\sqrt{1+y^{2}}$
Squaring both side, we have
$e^{2x}+y^{2}-2e^{x}y=1+y^{2}$
$\Rightarrow 2e^{x}y=e^{2x}-1$
$\Rightarrow y=\frac{e^{2x}-1}{2e^{x}}\Rightarrow y=\frac{1}{2}[e^{x}-e^{-x}]$