Answer:
Option B
Explanation:
g(x).g(y) =g(x)+g(y)+g(xy)-2 ...(i)
Put x=1, y=2 then
g(1). g(2)=g(1)+g(2)+g(2)-2
5g(1)- g(1) +5+5-2
4g(1)= 8
∴ g(1)=2
Put y = 1x in equation (i) , we get
g(x) , g(1x )= g(x) + g( 1x)+g(1)-2
g(x) . g(1x) = g(x) + g(1x)+2-2
[∵ g(1)=2]
This valid only for the polynomial
∴ g(x) = 1±xn .................(2)
Now g(2)=5 (Given)
∴ 1± 2n= 5 [Using equation(2)]
± 2n =4, ⇒ 2n =4,-4
Since , the value of 2n cannot be -Ve
So , 2n =4 . ⇒ n=2
Now, put n=2 in equation (2) , we get
g(x) =1 ± x2
∴Ltx→3g(x)=Ltx→3(1±x2)=1±(3)2
= 1±9=10,−8