Processing math: 100%


1)

If g(x)  is a polynomial satisfying g(x) g(y) =g(x)+g(y) +g(xy)-2

 For all real x and y and  g(2)=5 then  Ltx3g(x)  is 


A) 9

B) 10

C) 25

D) 20

Answer:

Option B

Explanation:

 g(x).g(y) =g(x)+g(y)+g(xy)-2  ...(i)

 Put x=1, y=2 then

 g(1). g(2)=g(1)+g(2)+g(2)-2

 5g(1)- g(1) +5+5-2

 4g(1)= 8

   g(1)=2

  Put y = 1x in equation  (i) , we get

 g(x) , g(1x )= g(x) + g( 1x)+g(1)-2

g(x) . g(1x) = g(x) + g(1x)+2-2

                                                      [ g(1)=2]

 This valid only for the polynomial 

  g(x) = 1±xn .................(2)

 Now g(2)=5      (Given)

    1± 2n= 5     [Using equation(2)]

 ±  2n =4, 2n =4,-4

 Since , the  value of 2n cannot be -Ve

 So , 2n =4 .   n=2

 Now, put  n=2 in equation (2) , we get

 g(x) =1  ± x2

 Ltx3g(x)=Ltx3(1±x2)=1±(3)2

      =  1±9=10,8