1)

 If A and B are matrices and B= ABA-1 then the value of (A+B) (A-B) is 


A) $A^{2}+B^{2}$

B) $A^{2}-B^{2}$

C) A+B

D) A-B

Answer:

Option B

Explanation:

 B= ABA-1(Given)

 But B= BAA-A

$\therefore$   $ABA^{-1}=BAA^{-1}\Rightarrow AB=BA$

 Now   $(A+B)(A-B)=A^{2}-AB+BA-B^{2}$

$A^{2}-AB+BA-B^{2}[\because AB=BA]$

   = $A^{2}-B^{2}$