1)

If f(x) = x2, g(x) = 2x,  $0\leq x \leq2$ then the value of  $I(x)= \int_{0}^{2} max(f(x),g(x) ) $ is 


A) $\frac{10}{3}$

B) $\frac{1}{3}$

C) $\frac{11}{3}$

D) 32

Answer:

Option D

Explanation:

Let r(x) = f(x).g(x)

 = x2..2x= 2 x3

 r'(x) =6x2

 Put 6 x2  =0, $\therefore$   x=0

2152021684_m2.JPG

 Max r(x) =2 (2)3 =16

 or Max (f(x) ,g(x) )=16

 $I(x)=\int_{0}^{2} 16 dx$

$I(x)=[ 16x ]_0^2=32-0=32$