Answer:
Option A
Explanation:
$\overrightarrow{AO}= \hat{i}+2\hat{j}+\hat{k}$
$\overrightarrow{AC}= -2\hat{i}-\hat{j}+\hat{k}$
Angle between faces OAB and ABC = Angle between $\overrightarrow{AO}$ and $\overrightarrow{AC}$ .
If Q be the angle between $\overrightarrow{AO}$ and $\overrightarrow{AC}$ , then
$\cos \theta= \frac{\overrightarrow{AO}.\overrightarrow{AC}}{|\overrightarrow{AO}||\overrightarrow{AC}|}$
$=\frac{1\times(-2)+2\times(-1)+1\times1}{\sqrt{1+4+1}\sqrt{4+1+1}}$
$ \frac{-3}{6}=-\frac{1}{2}=\cos 120^{0}$
$\theta=120^{0}$