Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

 The solution of differential equation (1+y2)+(xetan1y)dydx=0


A) (x2)=ketan1y

B) 2xetan1y=e2tan1y+k

C) xetan1y=etan1y+k

D) xe2tan1y=etan1y+k

Answer:

Option B

Explanation:

1+y2+(xetan1y)dydx=0

(1+y2)dx=(etan1yx)dy

 dydx=etan1yx1+y2

dydx+11+y2.x=etan1y1+y2

 Which is the linear different equation of the `

form  dxdy+Rx=S , where R and S are functions of y or constant (s)

I.F=e11+y2.dy=etan1y

Hence required solution is

   x.I.F = aetan1y1+y2(I.F)dy

 x.etan1y=etan1y1+y2(etan1y)dy

  x.etan1y=e2tan1y1+y2dy   ......(i)

 Put t= tan-1 y

    dtdy=11+y2dt=11+y2dy

       e2tan1y1+y2dy=e2t.dt=e2t2+K

 Hence equation(i)  becomes

 xetan1y=12e2t+K

  xetan1y=12e2tan1y+K

 2xetan1y=e2tan1y+K