Answer:
Option B
Explanation:
1+y2+(x−etan−1y)dydx=0
⇒(1+y2)dx=(etan−1y−x)dy
⇒dydx=etan−1y−x1+y2
⇒dydx+11+y2.x=etan−1y1+y2
Which is the linear different equation of the `
form dxdy+Rx=S , where R and S are functions of y or constant (s)
∴ I.F=e∫11+y2.dy=etan−1y
Hence required solution is
x.I.F = ∫aetan−1y1+y2(I.F)dy
⇒x.etan−1y=∫etan−1y1+y2(etan−1y)dy
⇒x.etan−1y=∫e2tan−1y1+y2dy ......(i)
Put t= tan-1 y
∴ dtdy=11+y2⇒dt=11+y2dy
∴ ∫e2tan−1y1+y2dy=∫e2t.dt=e2t2+K
Hence equation(i) becomes
xetan−1y=12e2t+K
⇒xetan−1y=12e2tan−1y+K
⇒2xetan−1y=e2tan−1y+K