Answer:
Option D
Explanation:
For a dipole at position (R, Q)
$B_{R}=\frac{\mu_{0}}{4\pi}.\frac{2M\cos\theta}{R^{3}}$ .....(i)
and $B_{Q}=\frac{\mu_{0}}{4\pi}.\frac{M\sin\theta}{R^{3}}$
also $\tan\phi=\frac{B_{V}}{B_{H}}=-\frac{B_{R}}{B_{Q}}$ ......(iii)
Dividing eq.(i) by (ii)
$\frac{B_{R}}{B_{Q}}=\frac{2\cos\theta}{\sin\theta}=2\cot\theta$ .....(iv)
From eq.(iii) and (iv)
$\tan\phi=-2\cot\theta$
From figure , $\theta=90^{0}+\lambda$
$\because$ $\tan\phi=-2\cot(90+\lambda)$
$\tan\phi=2\tan\lambda$