1)

A current of 2 A is flowing in the sides of an equilateral triangle of side 9 cm. The magnetic field at the centroid  of the triangle is 


A) $1.66\times 10^{-5}T$

B) $1.22\times 10^{-4}T$

C) $1.33\times 10^{-5}T$

D) $1.44\times 10^{-4}T$

Answer:

Option C

Explanation:

 Due  to current through side AB Magnetic field at the centre O

$B_{1}=\frac{\mu_{0}I}{4\pi a}[\sin \theta_{1}+\sin \theta_{2}]$

2352021309_p7.JPG

 As the  magnetic field due to each of the three sides is the same in magnitude  and direction

 $\therefore$ Total magnetic field at O  is the sum of all the fields.

 i.e,   $B=3B_{1}=\frac{3\mu_{0}I}{4\pi a}[\sin \theta_{1}+\sin \theta_{2}]$

 Here,    $\tan\theta_{1}=\frac{AD}{OD}\Rightarrow\tan 60^{0}=\frac{\frac{l}{2}}{a}$

$a=\frac{l}{2\sqrt{3}}=\frac{9\times 10^{-2}}{2\sqrt{3}}$

 Now B

$=3\times\frac{4\pi\times 10^{-7}\times2}{4\pi\times\frac{9\times 10^{-2}}{2\sqrt{3}}}[\sin 60^{0}+\sin 60^{0}]$

 =  $\frac{4\sqrt{3}}{9}\times 10^{-5}[\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}]$

 =1.33 x 10-5 T