Answer:
Option D
Explanation:
Let f(x) = $ \log(1+x) -\frac{x}{1+x}$
$\therefore$ $f'(x)=\frac{1}{1+x}-\frac{(1+x).1-x.1}{(1+x)^{2}}$
$=\frac{1}{1+x}-\frac{1}{(1+x)^{2}}=\frac{x}{(1+x)^{2}}$
Which is positive . [$\because$ x>0]
$\therefore$ f(x) is monoatomic increasing , when x>0.
$\Rightarrow$ f(x) > f (0)
now, f(0) = log 1-0=0
$\therefore$ f(x) >0
$\Rightarrow$ $\log(1+x)-\frac{x}{1+x} >0$
$\Rightarrow$ $\frac{x}{1+x}< \log(1+x)$.....(i)
Also, for x >0,
$x^{2}>0\Rightarrow x^{2}+x>x$
$\Rightarrow$ x(x+1) >x
$\Rightarrow$ $x > \frac{x}{x+1}$ ...........(ii)
From eqs. (i) and (ii) , we get
$\frac{x}{x+1}<\log (1+x)<x$
[ $\because$ log(1+x)<x for x >0]