1)

 At t=0, the function   $f(t)=\frac{\sin t}{t}$ has 


A) a minimum

B) a discontinuity

C) a point of inflexion

D) a maximum

Answer:

Option D

Explanation:

 Given $f(t)=\frac{\sin t}{t}$

 At t=0, we will check continuity of the  function 

LHL=f(0-h)

$=\lim_{h \rightarrow 0}\frac{\sin(0-h)}{(0-h)}=\lim_{h \rightarrow 0}\frac{-\sin h}{-h}=1$

 RHL=f(0+h)

$\lim_{h \rightarrow 0}\frac{\sin(0+h)}{(0+h)}=\lim_{h \rightarrow 0}\frac{\sin h}{h}=1$

and f(0)=1

LHL=RHL= f(0)

So, the function is continuous  at t=0

Now, we check the function is maximum or minimum

 $f '(t)=\frac{1}{t}\cos t-\frac{1}{t^{2}}\sin t$

and    $f ''(t)=\frac{-1}{t}\sin t-\frac{1}{t^{2}}\cos t-\frac{1}{t^{2}}\cos t+\frac{2}{t^{3}}\sin t$

 =$\frac{-\sin t}{t}-\frac{2\cos t}{t^{2}}+\frac{2\sin t}{t^{3}}$

 For maximum or minimum value  of  f(x) , put    f '(x)=0

$\Rightarrow\frac{\cos t}{t}-\frac{\sin t}{t^{2}}=0\Rightarrow\frac{\tan t}{t^{}}=1$

 Now  $\lim_{t \rightarrow 0}f ''(t)$

$=-\lim_{t \rightarrow 0}\left(\frac{\sin t}{t}\right)-2\lim_{t \rightarrow 0}\left(\frac{t\cos t-\sin t}{t^{3}}\right)$

                                                                    $[\frac{0}{0} form]$

 $= -1-2\lim_{t \rightarrow 0}\left(\frac{\cos t-t\sin t-\cos t}{3t^{2}}\right)$   [Using L' Hosptial rule ]

$= -1+\frac{2}{3}\lim_{t \rightarrow 0}\frac{\sin t}{t}$

$= -1+\frac{2}{3}\times1=\frac{-1}{3}<0$

 So , function f(t) is maximum at t=0