Answer:
Option C
Explanation:
Suppose , A : a male is selected
B: a smoker is selected
Given:
$P(A\cup B)=\frac{7}{10}, P(A\cap B)=\frac{2}{5}$ and $P(\frac{A}{B})=\frac{2}{3}$
The probability of selecting a smoker
$P(B)=\frac{P(A\cap B)}{P(\frac{A}{B})}$
=$\frac{2\times3}{5\times2}=\frac{3}{5}$
The probability of selecting a non-smoker So, P(B)=1-P(B)
$=1-\frac{3}{5}=\frac{2}{5}$
The probabilty of selecting a male
$P(A)=P(A\cup B)+P(A\cap B)-P(B)$
$=\frac{7}{10}+\frac{2}{5}-\frac{3}{5}$
$=\frac{7+4-6}{10}=\frac{1}{2}$
The probability of selecting a smoker, if a male is first selected , is given by
$P(\frac{B}{A})=\frac{P(A\cap B)}{P(A)}$
=$\frac{2}{5}\times\frac{2}{1}=\frac{4}{5}$