1)

The shortest distance between the lines  x73=y+416=z67  and 

x103=y308=4z5 is 


A) 2347 units

B) 28821 units

C) 2213 units

D) 23421 units

Answer:

Option B

Explanation:

 Given, lines are   

x73=y+416=z67  and 

x103=y3048=4z5 

 The vector  form of given lines are

  r=7ˆi4ˆj+6ˆk+λ(3ˆi16ˆj+7ˆk)   and

r=10ˆi+30ˆj+4ˆk+μ(3ˆi+8ˆj5ˆk)

 On comparing these equations with

r=a1+λb1  and   r=a2+μb2, we get 

a1=7ˆi4ˆj+6ˆk

a2=10ˆi+30ˆj+4ˆk

b1=3ˆi16ˆj+7ˆk

 and b2=3ˆi+8ˆj5ˆk

 Shortest distance=    |(a2a1).(b1×b2)|b1×b2||

 = |(3ˆi+34ˆj2ˆk).(24ˆi+36ˆj+72ˆk)84|

 = |72+122414484|=|115284|=28841  units