Answer:
Option B
Explanation:
Given, lines are
x−73=y+4−16=z−67 and
x−103=y−3048=4−z5
The vector form of given lines are
r=7ˆi−4ˆj+6ˆk+λ(3ˆi−16ˆj+7ˆk) and
r=10ˆi+30ˆj+4ˆk+μ(3ˆi+8ˆj−5ˆk)
On comparing these equations with
r=a1+λb1 and r=a2+μb2, we get
→a1=7ˆi−4ˆj+6ˆk
→a2=10ˆi+30ˆj+4ˆk
→b1=3ˆi−16ˆj+7ˆk
and →b2=3ˆi+8ˆj−5ˆk
Shortest distance= |(→a2−→a1).(→b1×→b2)|→b1×→b2||
= |(3ˆi+34ˆj−2ˆk).(24ˆi+36ˆj+72ˆk)84|
= |72+1224−14484|=|115284|=28841 units