Answer:
Option C
Explanation:
Here, mean =4 and variance =2
⇒ np=4 and npq=2
so, npqnp=24⇒q=12
Then p=1−q=1−12=12
Mean= np=4
⇒ n×12=4⇒n=8
∴ P(X=r)=nCrprqn−r
=8Cr(12)8 [∵p=q=12]
The required probabilty of atleast 7 successes is
P(X≥7)=P(X=7)+P(X=8)
= (8C7+8C8)(12)8
= (8!7!1!+8!8!0!)(12)8
= (8+1)(12)8=9256