Answer:
Option A
Explanation:
Let I=∫π/20(logtanx).sin2xdx ......(i)
I=∫π/20logtan(π2−x).sin2(π2−x)dx
[∵∫a0f(x)dx=∫a0f(a−x)dx]
⇒I=∫π/20logcotx.sin2xdx...........(ii)
[∵sin(π−2x)=sin2x]
On adding eqs(i) and (ii) , we get
2I∫π/20logtanx.sin2xdx+∫π/20logcotxsin2xdx
= ∫π/20sin2xlog(tanx.cotx)dx
[∵ logm+logn=log(m.n)]
∫π/20sin2xlog1dx
⇒ 1=0[∵log1=0]
∴ ∫π/20sin2xlog(tanx)dx=0