1)

π/20sin2x.logtanxdx is equal to


A) 0

B) 2

C) 4

D) 7

Answer:

Option A

Explanation:

Let   I=π/20(logtanx).sin2xdx   ......(i)

I=π/20logtan(π2x).sin2(π2x)dx

                                           [a0f(x)dx=a0f(ax)dx]

I=π/20logcotx.sin2xdx...........(ii)

                                         [sin(π2x)=sin2x]

 On adding eqs(i) and (ii) , we get

2Iπ/20logtanx.sin2xdx+π/20logcotxsin2xdx

π/20sin2xlog(tanx.cotx)dx

[   logm+logn=log(m.n)]

 π/20sin2xlog1dx

   1=0[log1=0]

   π/20sin2xlog(tanx)dx=0