Answer:
Option A
Explanation:
Equation of hyperbola is
3x2-2y2=6
$\Rightarrow $ $\frac{x^{2}}{2}-\frac{y^{2}}{3}=1$
So, a2 =2 and b2=3
Given, equation of line is x-3y=3
$\therefore$ Slope of given line = $\frac{1}{3}$
$\therefore$ Slope of line perpendicular to given line, m=-3
The equation of tangents are
$y=mx\pm\sqrt{a^{2}m^{2}-b^{2}}$
$=-3x\pm\sqrt{2\times9-3}$
$=-3x\pm\sqrt{18-3}$
$=-3x\pm\sqrt{15}$