1)

The equation  of tangent  to the hyperbola 3x2-2y2=6 , which is perpendicular  to the line x-3y=3, are 

 


A) $y=-3x\pm\sqrt{15}$

B) $y=3x\pm\sqrt{6}$

C) $y=-3x\pm\sqrt{6}$

D) $y=2x\pm\sqrt{15}$

Answer:

Option A

Explanation:

Equation of hyperbola is 

 3x2-2y2=6

 $\Rightarrow $     $\frac{x^{2}}{2}-\frac{y^{2}}{3}=1$

So, a2 =2   and b2=3

 Given,  equation of line is x-3y=3

$\therefore$  Slope of given line = $\frac{1}{3}$

$\therefore$   Slope of line  perpendicular to given line, m=-3

 The equation of tangents are

$y=mx\pm\sqrt{a^{2}m^{2}-b^{2}}$

 $=-3x\pm\sqrt{2\times9-3}$

$=-3x\pm\sqrt{18-3}$

 $=-3x\pm\sqrt{15}$